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Abstract
It is known that the {100} and {111} planes of cubic crystals subjected to
uniaxial deviatoric stress conditions have strain responses that are free from
the effect of lattice preferred orientation. By utilizing this special character,
one can unambiguously and simultaneously determine the mean pressure and
deviatoric stress from polycrystalline diffraction data of the cubic sample. Here
we introduce a numerical tensor calculation method based on the generalized
Hooke’s law to simultaneously determine the hydrostatic component of the
stress (mean pressure) and deviatoric stress in the sample. The feasibility of this
method has been tested by examining the experimental data of the Au pressure
marker enclosed in a diamond anvil cell using a pressure medium of methanol–
ethanol mixture. The results demonstrated that the magnitude of the deviatoric
stress is ∼0.07 GPa at the mean pressure of 10.5 GPa, which is consistent with
previous results of Au strength under high pressure. Our results also showed
that even a small deviatoric stress (∼0.07 GPa) could yield a ∼0.3 GPa mean
pressure error at ∼10 GPa.

1. Introduction

Deviatoric stress could cause inhomogeneous strain responses on each hkl plane in
materials [1, 2]. This effect could cause a systematic error in the pressure value if the
pressure is determined from the unit cell volume of pressure standard materials using x-ray
diffraction [3, 4]. On the other hand, by utilizing this effect, polycrystalline materials of
cubic symmetry have extensively been investigated to estimate the stress state of the sample
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compressed by opposed anvil high-pressure cells through radial diffraction [1, 4–21] and axial
diffraction [3, 22–25] geometries.

Many of the above studies have employed analytical methods based on the following
theoretical relationships established in the x-ray elastic constant (XEC) method [26, 27] to
analyse the magnitude of deviatoric stress in the sample,

dm(hkl) = dp(hkl){1 + (1 − 3 cos2ψ)Q(hkl)}, (1)

where dm(hkl) and dp(hkl) are the d-spacing observed in x-ray measurements and that caused
by mean pressure alone, respectively, ψ is the angle between the load axis of the deviatoric
stress and the diffracting plane normal, and Q is a factor containing the magnitude of the
deviatoric stress and the single crystal elastic compliances, Si j . Note that equation (1) is derived
under the assumption of isotropic grain orientation. If the sample had preferred orientation, the
deviatoric stress analysed from equation (1) could have additional uncertainty that cannot be
analytically estimated. However, it is known that the hkl planes of four-fold and three-fold
symmetries, such as {100} and {111}, respectively, have strain responses that are free from the
effect of lattice preferred orientation [28, 29]. Therefore, by using only these reflections for
data analysis, one can unambiguously determine the deviatoric stress in a sample placed in a
uniaxial stress field.

On the other hand, as long as the single-crystal elastic constants of the sample are known
and the deformation is in the elastic regime, we can directly determine the deviatoric stress of
the sample from the strain observed in diffraction lines based on the generalized Hooke’s law,
as Weidner et al [30] suggested. In this work, we use the generalized Hooke’s law instead of
using equation (1) to examine the stress responses of cubic crystals in an axial symmetric stress
field as a function of grain orientation by conducting numerical tensor calculations. The advan-
tage of the numerical tensor calculation is that we can directly analyse the degree of variation of
the stress response of the crystalline material as a function of grain orientation, which cannot be
done from equation (1). Due to this reason, numerical tensor analysis could also be used to ex-
amine the lattice preferred orientation, although we will not attempt to do it in the present study.

In order to determine a ‘real pressure’ that is determined by taking all the hydrostatic
stress components of the sample into account, Meng et al have suggested a simple analytical
method. However, their method also assumes isotropic grain orientation. To eliminate any
assumption related to preferred orientation of the sample, we introduce a numerical tensor
analysis to simultaneously determine the mean pressure and deviatoric stress of a cubic sample
compressed in a diamond anvil cell (DAC). The feasibility of this numerical method will be
tested by examining the mean pressure and deviatoric stress of Au compressed in a DAC
using a methanol–ethanol pressure transmitting medium. Au has been selected as the sample
because it has been widely used as a pressure standard material (pressure marker) in high-
pressure experimental physics and it has a large anisotropic factor, a = 2.9 at 0 GPa (here
a = 2C44/(C11 − C12) with Ci j being the stiffness elastic constant).

2. Geometrical settings and notation of tensor

Figure 1 shows our experimental setting of angle-dispersive x-ray diffraction experiments using
a DAC and an imaging plate (IP) detector with axial diffraction geometry. This geometry is
assumed to develop our numerical calculation method. The X axis is in the direction of the
normal vector of the diffracting planes. In this geometry, all crystallites for which an (hkl)
plane is perpendicular to the X axis will contribute to the hkl diffraction peak. This family
of crystallites includes crystallites with a variety of orientations (rotation around X ). For
simplicity, we set the Z ′ axis in the instrumental coordinate to be identical to the Z axis in
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Figure 1. Schematic figure of the experimental configuration from a vertical viewpoint. The
relationship between the instrumental coordinate system (X ′Y ′ Z ′) and the x-ray diffraction
coordinate system (XY Z ) is shown. Note that Z and Z ′ axes are perpendicular to the sheet. The
x-ray beam proceeds along the Y ′ axis. Axial symmetry in the stress field is assumed with respect
to the Y ′ axis. The X axis is set to be in the direction normal to each diffracting plane. The range
of θ was 5◦–10◦ in the present measurements. When the Y ′ axis is the load axis of the deviatoric
stress, the angle ψ in equation (1) is given as ψ = π/2 − θ .

the x-ray diffraction coordinate. Definitions of the angle θ and the relationship between the
instrumental coordinates (X ′Y ′ Z ′) and the x-ray diffraction coordinates (XY Z ) are also shown
in figure 1. Figure 2 shows the definition of crystal rotation angle φ and the relative relationship
between the crystal coordinates (xyz) and the x-ray diffraction coordinates (XY Z ) for the
representative cases of the {100} and {111} planes in a single crystal of cubic symmetry. The
x-ray diffraction coordinates (XY Z ) are dependent on each hkl plane in the angle-dispersive
geometry, while if an energy-dispersive geometry with a fixed 2θ angle is employed, the x-ray
diffraction coordinates (XY Z ) in all of the hkl planes are the same for all the hkl planes.

We describe the stress and strain tensors using Voigt’s notation using one Voigt index
instead of the original tensor notation using pair of indices, i j . Thus, stress, σ , can be expressed
as a six-component column vector:

�σ =




σ1

σ2

σ3

σ4

σ5

σ6



. (2)

The superscript arrow indicates that it is the six-component form of the second rank tensor. In
this expression, based on Voigt’s notation, σ1, σ2, and σ3 are compressional stress components,
and σ4, σ5, and σ6 are shear stress ones. The mean pressure p is defined as the average of
compressional stress components, p = (σ1 + σ2 + σ3)/3. Mean pressure corresponds to the
hydrostatic pressure component of the stress in the sample nonhydrostatically compressed in
an opposed anvil cell that can be determined from radial x-ray diffraction experiments at the
azimuthal angle ψ = 54.7◦ [1, 2] under an assumption of isotropic crystal grain orientation. A
hydrostatic pressure is a special state of stress, σ1 = σ2 = σ3 and σ4 = σ5 = σ6 = 0.

Considering the geometry of the experimental instruments, it is reasonable to assume a
deviatoric stress ��σ with axial symmetry along the Y ′ axis:
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Figure 2. Schematic figure of the relation between the x-ray diffraction coordinate system (XY Z )
and the crystal coordinate system (xyz). Note that the X axis is perpendicular to the sheet in every
case, and φ is the anticlockwise rotation angle of the crystal along the X axis. (a) Typical setting
for the {200} reflections. Note that the XY Z and xyz coordinates are identical in this case. (b)
The crystal grain rotates by φ along the X axis from the typical setting for {200} reflections. This
configuration also contributes to the {200} reflections. (c) Typical setting for the {111} reflections.
Note that the xyz axes are normal to the faces labeled by the corresponding characters. (d) The
crystal grain rotates by φ along the X axis from the typical setting for the {111} reflections. This
configuration also contributes to the {111} reflections.

��σ X ′ X ′ Z ′ =




−�σ/2
�σ

−�σ/2
0
0
0



, (3)

where the subscript specifies the axial coordinates for the expression. The above expression
is written in the instrumental (X ′Y ′Z ′) coordinate system. When we express stresses in x-ray
diffraction (XY Z ) coordinates, they must be transformed according to the transformation rule
for second rank tensors (see the appendix for details).

For convenience, we put forth the following definitions.
(1) The deviatoric stress tensor is defined such that it does not contain the mean pressure

component, i.e.,

σ1 + σ2 + σ3 ≡ 0, (4)

which is an invariant with respect to the coordinate transformation. Note that equation (3)
satisfies this requirement.
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(2) The sign of the stress, and thus the strain, is defined to be positive for compression so
that pressure is expressed as a positive number.

Also, from the viewpoint of elasticity, the strains in the hkl planes, (222), (200) and
(220), for example, should be exactly the same as those of the (111), (100) and (110) planes,
respectively. Since 100 and 110 diffraction lines of fcc Au are extinct, we use {200} and {220}
to denote {100} and {110}, respectively, in the following text.

3. Elastic strain in cubic single crystal under deviatoric stress

Here we attempt to show the advantage of a numerical tensor calculation based on the
generalized Hooke’s law compared to the conventional XEC method using equation (1) to
examine the elastic strain response of cubic materials under deviatoric stress. Also, we attempt
to confirm the consistency of the results obtained by numerical tensor calculation with those
obtained from equation (1).

For the purpose of schematic demonstration, we hypothetically apply a deviatoric stress
normalized as �σ = 1 GPa to Au at 0 GPa,

��σ X ′ X ′ Z ′ =




−1/2
1

−1/2
0
0
0



. (5)

To calculate the strain response of all grains contributing to the diffraction peak as a function
of grain orientation φ, we use the generalized Hooke’s law,

hklεX = hklε1 =
6∑

m=1

hkl SXY Z (φ)1m ��σ X X Z . (6)

Here, εX is the ε1 of �ε expressed in the x-ray diffraction (XY Z ) coordinate, because only the
strain in the X direction, εX , is related to the x-ray diffraction measurement in the present x-
ray diffraction geometry (figure 1). The hkl SXY Z is derived from the usual compliance matrix
expression Sxyz in the xyz crystal coordinate system through the coordinate transformation rule
for a fourth-rank tensor (see the appendix for details including the derivation of ��σ XY Z ).

Figure 3 shows the results of strain responses of four representative families of hkl planes
as a function of grain orientation angle φ obtained from equation (6) based on the numerical
tensor calculations. Strains for {111} and {200} are constant during the rotation around the
X -axis, while those of {220} and {311} vary significantly. In other words, hkl planes of four-
fold and three-fold symmetries, such as {100} and {111}, respectively, have strain responses
that are free from the effect of lattice preferred orientation around the X axis. These results
are consistent with the results by Gauthier [29]. This special property for {111} and {200}
is the basis of our numerical analysis to simultaneously determine the mean pressure and
deviatoric stress described later. Not only the deviation of the diffraction peak from the position
expected in hydrostatic conditions, but also the broadening of peak width as implied in figure 3
would be recorded in the x-ray diffraction data. Both anomalies could be used to analyse the
deviatoric stress in the x-ray diffraction data. However, in particular to use the latter information
for deviatoric stress analysis, one might need to obtain diffraction data of very high angular
resolution to distinguish the stress induced peak broadening from the instrumental one.

Figure 4 shows the results of numerical tensor calculation of the lattice strain response
of Au as a function of grain orientation ψ . The calculation was carried out using a modified
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Figure 3. Variations in 111εX , 200εX , 220εX and 311εX with φ, the axial rotation angle along the
X axis, under a deviatoric stress of σ = (−0.5, 1,−0.5, 0, 0, 0) GPa expressed in the instrumental
(X ′Y ′ Z ′) coordinate system for Au at 0 GPa.
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Figure 4. Lattice strain of hkl planes versus ψ . Dashed lines represent strain responses calculated
numerically for various crystal grain orientations, φ. The solid line is the average of these, which is
exactly consistent with the result obtained by equation (1).

equation (6) in which hkl S(φ)XY Z was replaced by hkl S(ψ)XY Z . Here we simply discuss the
magnitude of the elastic strain in the hkl planes as a function of ψ apart from the diffraction
condition. All the hkl planes have maximum compressional strain at ψ = 0◦ where the hkl
plane normal is parallel to the load axis, and minimum compressional strain at ψ = 90◦ where
the hkl plane normal is perpendicular to the load axis. In addition to this general feature, it is
also clear that the calculated stress responses for {111} and {200} are independent of φ, while
those for {110} and {311} are dependent on φ, which is consistent with the results by Funamori
et al [28]. This figure also compares our results with those obtained from equation (1). The
averaged lattice strain value over φ obtained from the numerical tensor calculation is exactly
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the same as the results obtained from equation (1), proving that the analytical method using
equation (1) gives the correct strain response of hkl planes when the polycrystalline material is
free from preferred orientation.

4. Numerical procedures to simultaneously determine mean pressure and deviatoric
stress

For the purpose of iterative calculations and to apply a generalized Hooke’s law, we introduce
a small variation in the mean pressure p,�p, which is expressed as

��p =




�p
�p
�p
0
0
0



. (7)

�p does not depend on the selection of the axial coordinate. The mean pressure p is given as
p = p0 + �p, where p0 is a reference state of hydrostatic pressure. Now εX is defined with
respect to p0 (i.e., εX = 0 at p = p0 and �σ = 0), and thus εX can be expressed as a linear
function of ��p and ��σ (generalized Hooke’s law),

hklεX = hklε1 =
6∑

m=1

hkl SXY Z (φ)1m( ��pm + ��σm). (8)

Because the deviatoric stress components depend on the selection of the axial coordinate, the
deviatoric stress should be expressed by the x-ray diffraction (XY Z ) coordinate system to
calculate equation (8) (see the appendix for the derivation of equation (9)),

��σ XY Z =




− cos2 θ
2 + sin2 θ

− sin2 θ
2 + cos2 θ

− 1
2

0

0
− 3 cos θ sin θ

2



�σ = →

b �σ, (9)

where the new column vector �b is introduced to simplify the next equation. Now we can express
equation (8) as



hklεX

∗
∗
∗
∗
∗




=




hklε1

∗
∗
∗
∗
∗




= hkl �ε = hkl S · ( ��p + ��σ)

=




S11 S12 S13 S14 S15 S16

S21 S22 S23 S24 S25 S26

S31 S32 S33 S34 S35 S36

S41 S42 S43 S44 S45 S46

S51 S52 S53 S54 S55 S56

S61 S62 S63 S64 S65 S66










1
1
1
0
0
0



�p +




b1

b2

b3

b4

b5

b6



�σ
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=




(S11 + S12 + S13)�p
∗
∗
∗
∗
∗




+




∑6
m=1 S1mbm�σ

∗
∗
∗
∗
∗




=




hkl A(φ) ·�p
∗
∗
∗
∗
∗




+




hkl B (φ) ·�σ
∗
∗
∗
∗
∗



. (10)

Note that the Si j matrix components are dependent on the hkl plane and the rotation angle φ
along the X axis. However, for a cubic crystal, hkl A(φ) is independent of the hkl planes and
φ, i.e., hkl A(φ) = A = 1/(3K ) (K is the bulk modulus). hkl B(φ) is different for each hkl and
is significantly dependent on crystal orientation φ. However, for {111} and {200}, hkl B(φ) is
independent of φ, i.e., hkl B(φ) = hkl B , as is clear from figure 3.

For the experimental data, we can define the strain in each of the hkl planes as

hkl EX = −
hkl dm − hkl dp

hkl dp
(11)

where hkl dm is the observed d-value in the hkl plane by x-ray diffraction, and hkl dp is the
calculated d-value of the hkl plane for a reference hydrostatic pressure of p0. The uppercase
E is used to distinguish the observed strain from the calculated one. Now the problem can be
simply expressed to solve the following simultaneous equations:

111 EX = A ·�p + 111 B ·�σ
200 EX = A ·�p + 200 B ·�σ. (12)

As the elastic constants are functions of pressure, the coefficients of A and hkl B are
calculated using elastic constants and pressure derivatives of Au single crystal. In our case,
we calculated A from an equation of state of Au [31, 32], while B was calculated based on
single crystal elasticity data [33]. Although we examined other Au elasticity data [34–36], the
differences were found to be as small as a few MPa both in the resulting mean pressure and the
deviatoric stress.

Below is the procedure for the numerical iteration:

(i) assume a certain reference hydrostatic pressure p0,
(ii) calculate hkl EX from equation (11) and A and hkl B from equation (10) at p = p0,

(iii) solve�p and �σ in (12),
(iv) resetp0 to p0 +�p,
(v) repeat (ii) to (iv) and continue iterative calculation until�p → 0.

Thus we obtain the mean pressure p = p0 and deviatoric stress σ = 1.5�σ (see
equation (3)). We refer to this numerical method using (111) and (200) as the ‘111–200’
method. It is possible to conduct a least squares calculations by adding equations in (12) using
the other (hkl). We refer to such least squares calculations as the ‘111–200–hkl’ method (e.g.,
111–200–220 method). In this case, however, we need to assume a specific distribution of
crystal grain orientation, such as an isotropic one, in the sample to calculate hkl B .
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Table 1. The d-values of the Au pressure marker in the experiment. The values are shown in Å.
The values in parentheses are the corresponding pressure values determined by a single index in
GPa.

Run d111 d200 d220 d311 d222

ku0202 2.3222 2.0104 1.4217 1.2125 1.1607
(7.82) (8.01) (7.96) (7.92) (8.01)

ku0204 2.3164 2.0061 1.4182 1.2097 1.1580
(9.41) (9.39) (9.53) (9.42) (9.52)

ku0206 2.3145 2.0045 1.4172 1.2085 1.1570
(9.94) (9.93) (10.01) (10.03) (10.06)

ku0208 2.3141 2.0040 1.4167 1.2082 1.1565
(10.06) (10.08) (10.23) (10.22) (10.36)

ku0209 2.3266 2.0150 1.4247 1.2150 1.1632
(6.64) (6.61) (6.66) (6.67) (6.68)

5. Example of data analysis and discussion: case study for gold

Diffraction data of Au were acquired as part of hydrostatic compression experiments of an
aluminous magnesian silicate perovskite (MgSiO3 containing 1 mol% Al2O3) using a DAC
up to ∼10 GPa. An Au foil was prepared by squeezing Au powder between two anvils. A
chunk of sintered polycrystalline perovskite and the Au foil were placed separately in a gasket
hole filled with a 4:1 mixture of methanol and ethanol pressure medium [37]. In situ x-ray
diffraction experiments were performed using synchrotron radiation x-rays at beam line 13-
B2 of the Photon Factory, Tsukuba, Japan. An angle-dispersive diffraction technique was
employed using an IP detector. The x-ray beam was monochromatized to the wavelength of
0.4429 ± 0.0002 Å using a Si(111) monochrometer. Details of the experimental procedure can
be found in Kubo et al [38].

Table 1 shows the observed d-values for hkl planes of Au and the pressure values
determined from individual dhkl using the equation of state of Au [31, 32]. It is clear that the
d-values of the 222 line are 0.006–0.045% smaller than expected from those of the 111 line,
and as a result, pressures calculated from d111 and d222 differ by 0.04–0.30 GPa. The reason
for this inconsistency is not clear. For this reason, we are aware of the limitation of the present
analysis to yield unambiguous results using this experimental data set. However, a precision of
the experimental d-values of the order of 0.0001 Å is required to obtain results with a precision
of ∼0.1 GPa, as discussed later. Therefore, to test the performance of the present numerical
analysis, we assume that either 111 or 222 exhibits the true d-value, and that the precision for
the d-values is guaranteed in the figure of 0.0001 Å, even though the accuracy of the d-values
might be of the order of 0.001 Å due to experimental uncertainties such as x-ray wavelength.

Table 2 shows an example of the calculated results for A, hkl B , and d-values (run ku0208).
The large difference between 222 B and 200 B enables us to conduct the present analysis. In the
results from the 222–200 analysis, the expected dp and dcal

m for the 220 and 311 are shown.
The dcal

m for the 220 and 311 are in good agreement with dobs
m , implying that the Au sample

has a nearly isotropic grain orientation. Therefore, we also conducted the 222–200–311 and
222–200–220–311 analyses under the assumption of isotropic grain orientation. The results
for 222–200–220–311 analysis are also shown in table 2 for comparison, showing excellent
agreement between these results.

Table 3 shows the analytical results for the mean pressure and deviatoric stress. In the
analyses including 222, both mean pressure and deviatoric stress show systematic evolution
as a function of pressure, and deviatoric stresses are always compressional along the Y ′
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Table 2. Example of the calculated results of A, hkl B, and the d-values for ku0208 in the 222–200
and the 222–200–220–311 analyses.

222–200 analysis A (Å GPa−1) hkl B dp (Å) dcal
m dobs

m

222 −1.4738e−3 4.2321e−3 1.1563 1.1565 1.1565
200 −1.4738e−3 12.993e−3 2.0028 2.0040 2.0040
220 −1.4738e−3 6.1491e−3 1.4162 1.4166 1.4167
311 −1.4738e−3 8.2579e−3 1.2077 1.2082 1.2082

222–200–220–311 analysis

222 −1.4740e−3 4.2327e−3 1.1563 1.1565 1.1565
200 −1.4740e−3 12.994e−3 2.0028 2.0040 2.0040
220 −1.4740e−3 6.1498e−3 1.4162 1.4166 1.4167
311 −1.4740e−3 8.2588e−3 1.2077 1.2082 1.2082

Table 3. Comparison of pressure values determined by several methods. All data are shown in
GPa. Pave is the average of the pressures determined from each dhkl without taking into account the
effect of the deviatoric stress. The bulk moduli of aluminous perovskite, KPV, in the bottom row
are based on the pressure values shown in each column.

P111−200 P222−200 P222−200−311 P222−200−220−311

Run Pave σ111−200 σ222−200 σ222−200−311 σ222−200−220−311

ku0202 7.94 7.72 8.00 7.97(10) 7.96(6)
−0.05 −0.00 −0.003(16) −0.005(11)

ku0204 9.45 9.41 9.59 9.57(5) 9.60(5)
0.00 0.03 0.033(8) 0.038(8)

ku0206 10.00 9.94 10.13 10.14(4) 10.13(4)
0.00 0.04 0.036(6) 0.033(6)

ku0208 10.19 10.05 10.49 10.49(2) 10.45(5)
−0.01 0.07 0.071(3) 0.065(9)

ku0209 6.65 6.66 6.71 6.72(3) 6.72(2)
0.01 0.02 0.019(5) 0.018(3)

KPV 233 230 237 237 236

direction within uncertainties, implying unexpected solidification of the methanol–ethanol
mixture. On the other hand, the deviatoric stresses obtained from the 111–200 analysis are less
than ±0.01 GPa except run ku0202, in which deviatoric stress is −0.05 GPa, indicating less
compression in the Y ′ direction, which is not likely to develop in the compression process using
a DAC. For this reason, we assume that the observed d-value of (222) is more consistent with
those of the other hkl planes, and we discuss the possibility of solidification of the methanol–
ethanol mixture during compression.

Figure 5 shows the evolution of the deviatoric stress as a function of the mean pressure
based on the 222–200–311 analysis. The arrows indicate the time sequence of the experiment.
We can see that deviatoric stress increases with mean pressure during the compression process,
then decreases with mean pressure during the decompression process. It is known that a
methanol–ethanol solution mixed in the eutectic volume ratio of 4:1 remains hydrostatic up
to 10 GPa at room temperature. However, if the mixing ratio was not in the eutectic proportion,
the solidification pressure could be less than 10 GPa according to the schematic phase diagram
shown (figure 6). The appearance of deviatoric stress between 8.0 and 9.6 GPa can be
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interpreted as partial solidification of the methanol–ethanol mixture, and the abrupt increase of
the deviatoric stress between 10.1 and 10.5 GPa can be interpreted as the total solidification of
the pressure medium, which is consistent with the freezing pressure of the eutectic composition
of the mixture (4:1 methanol–ethanol in volume) [37]. On the other hand, a deviatoric stress of
0.02 GPa observed at the mean pressure of 6.7 GPa in the decompression process may be due
to hysteresis of the solid–liquid transition in the methanol–ethanol mixture, and/or difference
of the lowest bridging pressures of the sample in partially molten alcohol between the two
diamond anvils due to the difference of thickness of the gasket in the loading and unloading
processes.

The magnitude of the deviatoric stress supported by Au is ∼0.07 GPa at the highest mean
pressure of 10.5 GPa (figure 5). If yielding occurs, the deviatoric stress should be limited to
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the yield strength. The trend in the observed deviatoric stress shown in figure 5 is steeper than
a linear function, suggesting that the yield strength of Au seems to be higher than 0.07 GPa at
room temperature at ∼10 GPa. This is consistent with previous studies reporting a deviatoric
stress of ∼0.2 GPa for Au at a corresponding pressure range [7, 8].

The original purpose of the diffraction experiment was to investigate the compressibility
of aluminous silicate perovskite. As shown in table 3, revised pressure values by the 222-
based analyses yield a larger bulk modulus from the equation of state fit for the aluminous
perovskite, which is more consistent with the results obtained by Yagi et al [39] for the same
material using He as a pressure medium (242 GPa). As discussed above, we can develop a
consistent interpretation for the observed deviatoric stress in Au if we introduce solidification
of the methanol–ethanol mixture during compression.

If we believe the 111-based results are more relevant than the 222-based analysis,
one might adopt a completely different interpretation that Au was always compressed
hydrostatically (except run ku0202, for some unknown reason). The largest difference of
0.001 Å between d111 and 2d222 in ku0208 (table 1) causes a difference of 0.08 GPa in deviatoric
stress and 0.44 GPa in mean pressure (table 3). Therefore, if the precision of the experimental
d-values is limited to the figure of 0.001 Å, we can rule out neither of these scenarios nor
discuss the effect of deviatoric stress on Pave in table 3. We therefore conclude that a precision
of the order of 0.0001 Å is required to use the numerical tensor analysis in the case of the
present Au study.

6. Concluding remarks

We demonstrate the feasibility of simultaneous determination of mean pressure and deviatoric
stress from a numerical tensor analysis based on a generalized Hooke’s law, if the precision
of the experimental d-values is of the order of 0.0001 Å. This is the first demonstration of
the simultaneous determination of mean pressure and deviatoric stress in high-pressure x-ray
experiments by a numerical method without placing any assumptions (cf Meng et al [3]).

The present analysis suggests that even a small deviatoric stress (∼0.07 GPa) could yield
a mean pressure error of ∼0.3 GPa using an Au pressure marker. The Au pressure scale could
be very sensitive to stress, as discussed by Meng et al [3] in terms of large K/µ values (µ is
the rigidity). If so, the stress sensitivity of the Au pressure marker would allow us to develop
an internal stress sensor in a high-pressure apparatus.

Since Irifune et al [40] reported a relatively low pressure for the post-spinel transition in
Mg2SiO4, there has been intensive debate on the reliability of the Au pressure scale [41–44].
The present work suggests that even small stresses (∼0.2 GPa) in the Kawai-type high-pressure
apparatus [45] could yield ∼1 GPa errors in a pressure determination when an Au pressure
marker is used, and this effect might in part explain the unusually low pressure for the post-
spinel phase transition in Mg2SiO4 reported by Irifune et al [40].
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Appendix. Coordinate transformation of tensors

Although there are many textbooks on tensor analysis [46, 47], for the reader’s convenience
we present here some examples of tensor transformations. As long as the relative relationship
between the two axis coordinates is explicit, we can transform the elastic compliance tensor
expression from one coordinate system to another by applying the conversion rule for tensors.
We specify the old coordinate system as x1x2x3 and the new one as x ′

1x ′
2x ′

3. The directional
coefficients are defined by the inner product between the unit vectors as

ai j = (�e′
i , �e j ), i, j = 1, 2, 3. (A.1)

Any second-rank and fourth-rank tensor expressed in the old coordinate system can be
converted to an expression in the new coordinate system such as

σ ′
i j = aika jlσkl

C ′
i jkl = aioa j pakq alr Copqr .

(A.2)

Note that the primes specify the expression in the new coordinate system. In spite of the simple
conversion rule, the use of computers and computer programs such as MATLAB is inevitable
for calculations.

Although the original tensor form is suitable for the conversion calculation, the 6 × 6
component notation is more convenient for representing tensors. For instance, the elastic
stiffness matrix of an Au single crystal at ambient conditions is expressed as

C =




192.9 163.8 163.8 0 0 0
163.8 192.9 163.8 0 0 0
163.8 163.8 192.9 0 0 0

0 0 0 41.5 0 0
0 0 0 0 41.5 0
0 0 0 0 0 41.5




(A.3)

in GPa. Note that the above matrix is expressed in the xyz crystal coordinate system, which
consists of the three four-fold symmetric axes of a cubic crystal. As to the conversion rule
between the original tensor form and the 6 × 6 matrix, please check the literature for basic
crystal elasticity.

The elastic compliance matrix, S, is used in the present stress analysis. It is easily obtained
as the inversion matrix for the stiffness matrix C:

S =




23.55 −10.81 −10.81 0 0 0
−10.81 23.55 −10.81 0 0 0
−10.81 −10.81 23.55 0 0 0

0 0 0 24.10 0 0
0 0 0 0 24.10 0
0 0 0 0 0 24.10




(A.4)

in TPa−1. Then we have to express the compliance matrix in the x-ray diffraction (XY Z )
coordinate system. Let us consider the simplest case for the (200) plane. In this case, the
xyz crystal coordinates are identical to the XY Z coordinates, and thus the expression of S
in XY Z coordinates is given as (A.4). Then let us consider a 30◦ anticlockwise crystal grain
rotation along the X axis, for example as shown in figure 2(b). The unit vectors for the XY Z
coordinates are expressed as

eX = (1, 0, 0), eY = (0, cos(30◦),−sin(30◦)), eZ = (0, sin(30◦), cos(30◦))
(A.5)
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in the xyz coordinates associated with the crystal grain. The directional coefficients are given
as

ai j =
( 1 0 0

0 cos(30◦) −sin(30◦)
0 sin(30◦) cos(30◦)

)
=
( 1 0 0

0 0.866 −0.5
0 0.5 0.866

)
(A.6)

in matrix form. Note that the old expression for the compliance matrix S in xyz coordinates
is the one shown as (A.4). After converting it to the corresponding fourth-rank tensor, we can
apply the directional coefficients to obtain the new fourth-rank compliance tensor as shown
in (A.2). The resulting compliance matrix expressed in XY Z coordinates is given as

200SXY Z (30◦) =




23.55 −10.81 −10.81 0 0 0
−10.81 15.18 −2.45 9.66 0 0
−10.81 −2.45 15.18 −9.66 0 0

0 9.66 −9.66 57.57 0 0
0 0 0 0 24.10 0
0 0 0 0 0 24.10



. (A.7)

For the (111) plane, we can set the unit vectors of the XY Z coordinates to be

eX =
(

1√
3
,

1√
3
,

1√
3

)
, eY =

(
− 1√

2
,

1√
2
, 0

)
,

eZ =
(

− 1√
6
,− 1√

6
,

√
2√
3

) (A.8)

in xyz coordinates (figure 2(c)). Note that the above case is an example in which the normal
vector of the (111) plane coincides with the X axis. The resulting compliance matrix is given
as

111SXY Z (0
◦) =




8.67 −3.38 −3.38 0 0 0
−3.38 12.39 −7.10 0 −10.52 0
−3.38 −7.10 12.39 0 10.52 0

0 0 0 38.97 0 −21.04
0 −10.52 10.52 0 53.85 0
0 0 0 −21.04 0 53.85



. (A.9)

Although the expressions are quite different from each other, (A.4), (A.7) and (A.9) are
commonly expressed elastic behaviours of an Au single crystal.

Next, we calculate ��σ XY Z (equation (9)). For this purpose, we temporarily express the
deviatoric stress in the instrumental (X ′Y ′ Z ′) coordinate system as

�σX ′Y ′ Z ′ =




σ1

σ2

σ3

0
0
0



. (A.10)

In the present diffraction geometry, the unit vectors of the XY Z coordinates with respect to
X ′Y ′Z ′ coordinates are expressed as

eX = (cos θ,−sinθ, 0), eY = (sin θ, cos θ, 0), eZ = (0, 0, 1). (A.11)

Thus the directional coefficients (see (A.1)) are expressed in matrix form as

ai j =
( cos θ −sinθ 0

sin θ cos θ 0
0 0 1

)
. (A.12)
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By applying the second-rank tensor transformation equation (A.2), we obtain the new
expression for the deviatoric stress in XY Z coordinates:

�σXY Z =




σ1 cos2 θ + σ2 sin2 θ

σ1 sin2 θ + σ2 cos2 θ

σ3

0
0

(σ1 − σ2) cos θ sin θ.




(A.13)

By substituting σ1, σ2, and σ3 in equation (A.13) with those in equation (3), we obtain an
expression for the deviatoric stress in XY Z coordinates ��σ XY Z (equation (9)).
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